Dynamics, Control and Robotics
Research in dynamics includes theoretical, computational and experimental research in the general area of dynamical systems, dynamics and vibrations, dynamics of flexible bodies, high-dimensional dynamical systems and dynamics of contact resonance atomic force microscopy (AFM).
Research in control includes feedback control of fluid flows, modeling and feedback control for biological and/or robotic systems, optimal and distributed control of networked systems, fault/attack detection and adaptation in cyber-physical systems, applications of advanced control and coordination methods in manned or unmanned aerial/ground vehicles, AFMs, telescopes, bridges/buildings, structural control systems and fluid-structure-control interactions.
Research in robotics includes bio-inspired design of control and estimation algorithms for flying and swimming robots, soft robotics (e.g., manipulators, grippers and shape-morphing devices), wearable robotics for assistance/resistance/rehabilitation, as well as synthesis, modeling, analysis of smart materials for sensing and actuating applications in soft robotics and their integration in mechatronics devices. Artificial intelligence (AI) and reinforcement learning with stochastic techniques also are investigated and used for secure path planning and execution in robotic applications which include advanced urban air mobility with vision-based navigation.